133 research outputs found

    Evaluation methods for improving surface geometry of concrete floors. A case study

    Get PDF
    Among various construction activities, related to concrete pavement technologies, an important role is reserved to industrial floors. For these structures it is necessary to ensure resistance and stability, durability, reliability and many other properties. In particular, the flatness is a special requirement that assumes a real significance respect to functional performances, especially when the pavement has to allow the movement of vehicles and goods or the storage in elevated stacks or shelves. The flatness can be defined in different ways, but in every cases it is referred to pavement surface geometry, that has to be even (without superelevated or depressed areas) and level (horizontal, without grades, curvatures and waves). The acceptance limits are defined by technical standards, in various Countries, together with the suitable methods for measurements and controls. In many cases, however, these methods are considered not really feasible or easy, in particular when a continuous sampling of the pavement, along selected alignments, is needed. In particular, the paper describes the operating procedures to calculate indexes FF and FL, according to ASTM 1155M standard, starting from data provided by a contact profilometer. If the target values are not reach, it is necessary to provide some alternative solutions to avoid the demolition of the slabs or the payment of penalties by the builder, if this is required by the contract. There are two main possible methods for increasing flatness and levelness while other functional surface properties are maintained at the expected levels: the surface grinding and the overlapping with self-levelling and high resistance resins. A case study where the two alternative methods are applied to improve flatness and levelness of a surface is presented. The results of measures made before and after the treatments showed that both the solutions are able to ensure, within certain limits, the fulfillment of the requirements and consequently they can be used for the proposed aims

    Climate change and transport infrastructures: State of the art

    Get PDF
    Transport infrastructures are lifelines: They provide transportation of people and goods, in ordinary and emergency conditions, thus they should be resilient to increasing natural disasters and hazards. This work presents several technologies adopted around the world to adapt and defend transport infrastructures against effects of climate change. Three main climate change challenges have been examined: Air temperatures variability and extremization, water bombs, and sea level rise. For each type of the examined phenomena the paper presents engineered, and architectural solutions adopted to prevent disasters and protect citizens. In all cases, the countermeasures require deeper prediction of weather and climate conditions during the service life of the infrastructure. The experience gained supports the fact that strategies adopted or designed to contrast the effects of climate change on transport infrastructures pursue three main goals: To prevent the damages, protect the structures, and monitor and communicate to users the current conditions. Indeed, the analyses show that the ongoing climate change will increase its impact on transport infrastructures, exposing people to unacceptable risks. Therefore, prevention and protection measures shall be adopted more frequently in the interest of collective safety

    Use of generated artificial road profiles in road roughness evaluation

    Get PDF
    In the evaluation of road roughness and its effects on vehicles response in terms of ride quality, loads induced on pavement, drivers’ comfort, etc., it is very common to generate road profiles based on the equation provided by ISO 8608 standard, according to which it is possible to group road surface profiles into eight different classes. However, real profiles are significantly different from the artificial ones because of the non-stationary feature of the first ones and the not full capability of the ISO 8608 equation to correctly describe the frequency content of real road profiles. In this paper, the international roughness index, the frequency-weighted vertical acceleration awz according to ISO 2631, and the dynamic load index are applied both on artificial and real profiles, highlighting the different results obtained. The analysis carried out in this work has highlighted some limitation of the ISO 8608 approach in the description of performance and conditions of real pavement profiles. Furthermore, the different sensitivity of the various indices to the fitted power spectral density parameters is shown, which should be taken into account when performing analysis using artificial profiles

    Measurement methods and analysis tools for rail irregularities. A case study for urban tram track

    Get PDF
    Rail irregularities, in particular for urban railway infrastructures, are one of the main causes for the generation of noise and vibrations. In addition, repetitive loading may also lead to decay of the structural elements of the rolling stock. This further causes an increase in maintenance costs and reduction of service life. Monitoring these defects on a periodic basis enables the network rail managers to apply proactive measures to limit further damage. This paper discusses the measurement methods for rail corrugation with particular regard to the analysis tools for evaluating the thresholds of acceptability in relation to the tramway Italian transport system. Furthermore, a method of analysis has been proposed: an application of the methodology used for treating road profiles has been also utilized for the data processing of rail profilometric data

    Ride quality due to road surface irregularities: Comparison of different methods applied on a set of real road profiles

    Get PDF
    Road roughness evaluation can be carried out using different approaches. Among these, the assessment of ride quality level perceived by road users is one of the most-used. In this sense, different evaluation methods have been developed in order to link the level of irregularities present on road surface profiles with the induced detrimental effects in terms of discomfort. In particular, relationships between wavelength content of road profiles and consequent level of comfort perceived had been investigated by using, in general, a mean panel ratings approach. In this paper, four ride quality evaluation methods (Ride Number, Michigan Ride Quality Index (RQI), Minnesota Ride Quality Index and frequency-weighted vertical acceleration, awz, according to ISO 2631 were applied to a set of real road profiles. The obtained results were analyzed, investigating a possible relation between the different indices, comparing them also with the most-used road roughness method worldwide: the International Roughness Index (IRI). The analyses carried out in this work have highlighted how the various rating scales may lead to a different ride quality assessment of the same road pavements. Furthermore, comparing the awz with the values obtained for the other three methods, it was found that their rating scales are set for speeds within the range 80–100 km/h. For this reason, it is necessary to identify new thresholds to be applied for lower speeds, as in the case of urban roads. In this sense, the use of the ISO 2631 approach would seem to be a useful tool

    The public safety zones around small and medium airports

    Get PDF
    Proper planning around airports safeguards the surrounding territory from risks of air accidents. Many countries have defined Public Safety Zones (PSZs) beyond the runway thresholds as a result of targeted risk assessment methods. Therefore, national aviation Authorities could limit building construction and industrial development in order to contain the risk for dwellers to be involved in aircraft accidents. The number of people who live, work or congregate in these areas should be limited. The procedure to set Public Safety Zones is based on advanced technical analyses for major infrastructures. For smaller airports, simplified schemes are used, but, sometimes, they are not as effective when considering the actual safety conditions. This article aims to identify the shape and size of the Public Safety Zones for small and medium one-runway airports. The influence of the volume and mix of traffic on the PSZ geometry has been evaluated using the program named SARA (Sapienza Airport Risk Analysis); the results are correlated with the current Risk Plans generally adopted in Italy. According to the air traffic, the Risk Plans are characterized by a dynamic definition and fit the results obtained from risk assessment

    Sampietrini stone pavements: Distress analysis using pavement condition index method

    Get PDF
    In several Italian cities, it is possible to find historical pavements such as the Sampietrini pavements, which are mainly located in the center of the city of Rome. The Sampietrini pavement is a particular road surface paved in natural stone with irregular sharp elements that are assembled by hand with the evident not plan effect. Because of their peculiarities, they are not suitable for streets where high speed is allowed. In many cases, high vibration and noise levels due to road traffic traveling on Sampietrini pavements are caused by inadequate maintenance, which is also affected by the absence of specific evaluation criteria regarding surface conditions and performances of Sampietrini pavements. It is not possible, in fact, to adopt common approaches developed to be used for flexible and rigid pavements, because they present completely different features and distresses. In this paper, to overpass this problem, a new evaluation criterion based on Pavement Condition Index (PCI) method established for block pavements is proposed. Furthermore, to fully characterize this kind of pavements, other analyses, i.e., International Roughness Index (IRI) and comfort level evaluation based on ISO 2631 standard, were also carried out. The results showed a good correlation between PCI and IRI approaches (R 2 = 0.82), also highlighting that new or reconstructed Sampietrini pavements present not negligible roughness level. This aspect was also confirmed estimating the comfort level perceived by users traveling at several speeds (≤50 km/h). Finally, speed related threshold values to be adopted for PCI and IRI methods are proposed. The proposed method can be implemented by pavement managers in a PMS ad hoc for stone block paving and thus, it can be integrated with other equivalents methods of visual inspection based on PCI

    Risk analysis in the surrounding areas of one-runway airports: A methodology to preliminary calculus of PSZs dimensions

    Get PDF
    The risk analysis of aeronautical accidents has been faced in several countries in order to plan the territory around airports. In the past, many accidents have had serious consequences in the surrounding of airports. To protect the dwellers in these zones, Sapienza University of Rome has studied a risk assessment model of air crash accident during take-off or landing. In force of an agreement with the National Aviation Authority, the major Italian airports have been analyzed. These studies have highlighted the opportunity to know the influence on the territory of the variation of the traffic volume. This knowledge can be particularly useful for forecasting the impact on the territory in a preliminary phase of the master planning activity of the airport. The influence of the traffic volume and the types of aircraft on the sizes of safety areas around airports has been studied with a computer program developed by the authors. As a result of this first analysis, a simplified approach to study the extension of the Public Safety Zones around an airport is presented. This method calculates the area and the main dimensions of PSZs for a number of representative cases of one-runway airports with more than 30000 operations per year. In Europe, there are a large number of one-runway airports and they have similar operational and traffic conditions. Therefore, the results here presented can be applied for a preliminary study to all the one-runway airports, having the same level of traffic of the airports considered in this paper

    A specified procedure for distress identification and assessment for urban road surfaces based on PCI

    Get PDF
    In this paper, a simplified procedure for the assessment of pavement structural integrity and the level of service for urban road surfaces is presented. A sample of 109 Asphalt Concrete (AC) urban pavements of an Italian road network was considered to validate the methodology. As part of this research, the most recurrent defects, those never encountered and those not defined with respect to the list collected in the ASTM D6433 have been determined by statistical analysis. The goal of this research is the improvement of the ASTM D6433 Distress Identification Catalogue to be adapted to urban road surfaces. The presented methodology includes the implementation of a Visual Basic for Application (VBA) language-based program for the computerization of Pavement Condition Index (PCI) calculation with interpolation by the parametric cubic spline of all of the density/deduct value curves of ASTM D6433 distress types. Also, two new distress definitions (for manholes and for tree roots) and new density/deduct curve values were proposed to achieve a new distress identification manual for urban road pavements. To validate the presented methodology, for the 109 urban pavements considered, the PCI was calculated using the new distress catalogue and using the ASTM D6433 implemented on PAVER TM. The results of the linear regression between them and their statistical parameters are presented in this paper. The comparison of the results shows that the proposed method is suitable for the identification and assessment of observed distress in urban pavement surfaces at the PCI-based scale

    Prioritization methodology for roadside and guardrail improvement: Quantitative calculation of safety level and optimization of resources allocation

    Get PDF
    The attention to road safety-related issues has grown fast in recent decades. The experience gained with these themes reveals the importance of considering these aspects in the resource allocation process for roadside and guardrail improvement, which is a complex process often involves conflicting objectives. This work consists on defining an innovative methodology, with the objective of calculating and analysing a numerical risk factor of a road. The method considers geometry, accident rate, traffic of the examined road and four categories of elements/defects where the resources can be allocated to improve the road safety (safety barriers, discrete obstacles, continuous obstacles, and water drainage). The analysis allows the assessment of the hazard index, which could be used in decision-making processes. A case study is presented to analyse roadsides of a 995 km long road network, using the cost-benefit analysis, and to prioritize possible rehabilitation work. The results highlighted that it is suitable to intervene on roads belonging to higher classes of risk, where it is possible to maximize the benefit in terms of safety as consequence of rehabilitation works (i.e., new barrier installation, removal and new barrier installation, and new terminal installation). The proposed method is quantitative; therefore, it avoids providing weak and far from reliable results; moreover, it guarantees a broad vision for the problem, giving a useful tool for road management body
    • …
    corecore